Use Dijkstra algorithm to describe monster paths
This commit is contained in:
		@@ -17,20 +17,15 @@ class Monster(FightingEntity):
 | 
			
		||||
                target = entity
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        if target:
 | 
			
		||||
        # A Dijkstra algorithm has ran that targets the player.
 | 
			
		||||
        # With that way, monsters can simply follow the path.
 | 
			
		||||
        # If they can't move and they are already close to the player,
 | 
			
		||||
        # They hit.
 | 
			
		||||
        if target and (self.y, self.x) in target.paths:
 | 
			
		||||
            # Move to target player
 | 
			
		||||
            y, x = self.vector(target)
 | 
			
		||||
            if abs(y) > abs(x):  # Move vertically
 | 
			
		||||
                if y > 0:
 | 
			
		||||
                    self.move_down()
 | 
			
		||||
                else:
 | 
			
		||||
                    self.move_up()
 | 
			
		||||
            else:  # Move horizontally
 | 
			
		||||
                if x > 0:
 | 
			
		||||
                    self.move_right()
 | 
			
		||||
                else:
 | 
			
		||||
                    self.move_left()
 | 
			
		||||
            if self.distance_squared(target) <= 1:
 | 
			
		||||
            next_y, next_x = target.paths[(self.y, self.x)]
 | 
			
		||||
            moved = self.check_move(next_y, next_x, True)
 | 
			
		||||
            if not moved and self.distance_squared(target) <= 1:
 | 
			
		||||
                self.hit(target)
 | 
			
		||||
        else:
 | 
			
		||||
            for _ in range(100):
 | 
			
		||||
 
 | 
			
		||||
@@ -1,4 +1,5 @@
 | 
			
		||||
from random import randint
 | 
			
		||||
from typing import Dict, Tuple
 | 
			
		||||
 | 
			
		||||
from ..interfaces import FightingEntity
 | 
			
		||||
 | 
			
		||||
@@ -14,6 +15,7 @@ class Player(FightingEntity):
 | 
			
		||||
    level: int = 1
 | 
			
		||||
    current_xp: int = 0
 | 
			
		||||
    max_xp: int = 10
 | 
			
		||||
    paths: Dict[Tuple[int, int], Tuple[int, int]]
 | 
			
		||||
 | 
			
		||||
    def move(self, y: int, x: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
@@ -22,6 +24,7 @@ class Player(FightingEntity):
 | 
			
		||||
        super().move(y, x)
 | 
			
		||||
        self.map.currenty = y
 | 
			
		||||
        self.map.currentx = x
 | 
			
		||||
        self.recalculate_paths()
 | 
			
		||||
 | 
			
		||||
    def level_up(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
@@ -61,3 +64,26 @@ class Player(FightingEntity):
 | 
			
		||||
                    self.add_xp(randint(3, 7))
 | 
			
		||||
                return True
 | 
			
		||||
        return super().check_move(y, x, move_if_possible)
 | 
			
		||||
 | 
			
		||||
    def recalculate_paths(self) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Use Dijkstra algorithm to calculate best paths
 | 
			
		||||
        for monsters to go to the player.
 | 
			
		||||
        """
 | 
			
		||||
        queue = [(self.y, self.x)]
 | 
			
		||||
        visited = []
 | 
			
		||||
        predecessors = {}
 | 
			
		||||
        while queue:
 | 
			
		||||
            y, x = queue.pop(0)
 | 
			
		||||
            visited.append((y, x))
 | 
			
		||||
            for diff_y, diff_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
 | 
			
		||||
                new_y, new_x = y + diff_y, x + diff_x
 | 
			
		||||
                if not 0 <= new_y < self.map.height or \
 | 
			
		||||
                        not 0 <= new_x < self.map.width or \
 | 
			
		||||
                        not self.map.tiles[y][x].can_walk() or \
 | 
			
		||||
                        (new_y, new_x) in visited or \
 | 
			
		||||
                        (new_y, new_x) in queue:
 | 
			
		||||
                    continue
 | 
			
		||||
                predecessors[(new_y, new_x)] = (y, x)
 | 
			
		||||
                queue.append((new_y, new_x))
 | 
			
		||||
        self.paths = predecessors
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user