Doors #156
@@ -26,8 +26,11 @@ DEFAULT_PARAMS = {
 | 
			
		||||
    "spawn_per_region": [1, 2],
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def dist(level: List[List[Tile]], y1: int, x1: int, y2: int, x2: int) -> int:
 | 
			
		||||
def dist(level, y1, x1, y2, x2):
 | 
			
		||||
    """
 | 
			
		||||
    Compute the minimum walking distance between points (y1, x1) and (y2, x2) on a Tile grid
 | 
			
		||||
    """
 | 
			
		||||
    # simple breadth first search
 | 
			
		||||
    copy = [[t for t in row] for row in level]
 | 
			
		||||
    dist = -1
 | 
			
		||||
    queue, next_queue = [[y1, x1]], [0]
 | 
			
		||||
@@ -56,12 +59,19 @@ class Generator:
 | 
			
		||||
    def room_fits(level: List[List[Tile]], y: int, x: int,
 | 
			
		||||
                  room: List[List[Tile]], door_y: int, door_x: int,
 | 
			
		||||
                  dy: int, dx: int) -> bool:
 | 
			
		||||
        """
 | 
			
		||||
        Using point (door_y, door_x) in the room as a reference and placing it 
 | 
			
		||||
        over point (y, x) in the level, returns whether or not the room fits
 | 
			
		||||
        here 
 | 
			
		||||
        """
 | 
			
		||||
        lh, lw = len(level), len(level[0])
 | 
			
		||||
        rh, rw = len(room), len(room[0])
 | 
			
		||||
        if not(0 < y + dy < lh and 0 < x + dx < lw):
 | 
			
		||||
            return False
 | 
			
		||||
        # door must be placed on an empty tile, and point into a floor tile
 | 
			
		||||
        if level[y][x] != Tile.EMPTY or level[y + dy][x + dx] != Tile.FLOOR:
 | 
			
		||||
            return False
 | 
			
		||||
        # now we verify floor tiles in both grids do not overlap
 | 
			
		||||
        for ry in range(rh):
 | 
			
		||||
            for rx in range(rw):
 | 
			
		||||
                if room[ry][rx] == Tile.FLOOR:
 | 
			
		||||
@@ -82,6 +92,10 @@ class Generator:
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def place_room(level: List[List[Tile]], y: int, x: int,
 | 
			
		||||
                   room: List[List[Tile]], door_y: int, door_x: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Mutates level in place to add the room. Placement is determined by 
 | 
			
		||||
        making (door_y, door_x) in the room correspond with (y, x) in the level
 | 
			
		||||
        """
 | 
			
		||||
        rh, rw = len(room), len(room[0])
 | 
			
		||||
        level[y][x] = Tile.DOOR
 | 
			
		||||
        for ry in range(rh):
 | 
			
		||||
@@ -91,12 +105,20 @@ class Generator:
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def add_loop(level: List[List[Tile]], y: int, x: int) -> bool:
 | 
			
		||||
        """
 | 
			
		||||
        Try to add a corridor between two far apart floor tiles, passing 
 | 
			
		||||
        through point (y, x).
 | 
			
		||||
        """
 | 
			
		||||
        h, w = len(level), len(level[0])
 | 
			
		||||
        
 | 
			
		||||
        if level[y][x] != Tile.EMPTY:
 | 
			
		||||
            return False
 | 
			
		||||
        # loop over both axis
 | 
			
		||||
 | 
			
		||||
        # loop over both directions, trying to place both veritcal
 | 
			
		||||
        # and horizontal corridors
 | 
			
		||||
        for dx, dy in [[0, 1], [1, 0]]:
 | 
			
		||||
            # then we find two floor tiles, exiting if we ever move oob
 | 
			
		||||
            # then we find two floor tiles, one on each side of (y, x)
 | 
			
		||||
            # exiting if we don't find two (reach the edge of the map before)
 | 
			
		||||
            y1, x1, y2, x2 = y, x, y, x
 | 
			
		||||
            while x1 >= 0 and y1 >= 0 and level[y1][x1] == Tile.EMPTY:
 | 
			
		||||
                y1, x1 = y1 - dy, x1 - dx
 | 
			
		||||
@@ -105,9 +127,10 @@ class Generator:
 | 
			
		||||
            if not(0 <= x1 <= x2 < w and 0 <= y1 <= y2 < h):
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            # if adding the path would make the two tiles significantly closer
 | 
			
		||||
            # and its sides don't touch already placed terrain, build it
 | 
			
		||||
            def verify_sides() -> bool:
 | 
			
		||||
                # switching up dy and dx here pivots the axis, so 
 | 
			
		||||
                # (y+dx, x+dy) and (y-dx, x-dy) are the tiles adjacent to 
 | 
			
		||||
                # (y, x), but not on the original axis
 | 
			
		||||
                for delta_x, delta_y in [[dy, dx], [-dy, -dx]]:
 | 
			
		||||
                    for i in range(1, y2 - y1 + x2 - x1):
 | 
			
		||||
                        if not (0 <= y1 + delta_y + i * dy < h
 | 
			
		||||
@@ -117,6 +140,8 @@ class Generator:
 | 
			
		||||
                                .can_walk():
 | 
			
		||||
                            return False
 | 
			
		||||
                return True
 | 
			
		||||
            # if adding the path would make the two tiles significantly closer
 | 
			
		||||
            # and its sides don't touch already placed terrain, build it
 | 
			
		||||
            if dist(level, y1, x1, y2, x2) < 20 and verify_sides():
 | 
			
		||||
                y, x = y1 + dy, x1 + dx
 | 
			
		||||
                while level[y][x] == Tile.EMPTY:
 | 
			
		||||
@@ -127,6 +152,10 @@ class Generator:
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def place_walls(level: List[List[Tile]]) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Place wall tiles on every empty tile that is adjacent (in the largest
 | 
			
		||||
        sense), to a floor tile
 | 
			
		||||
        """
 | 
			
		||||
        h, w = len(level), len(level[0])
 | 
			
		||||
        for y in range(h):
 | 
			
		||||
            for x in range(w):
 | 
			
		||||
@@ -136,11 +165,25 @@ class Generator:
 | 
			
		||||
                            level[ny][nx] = Tile.WALL
 | 
			
		||||
 | 
			
		||||
    def corr_meta_info(self) -> Tuple[int, int, int, int]:
 | 
			
		||||
        """
 | 
			
		||||
        Return info about the extra grid space that should be allocated for the
 | 
			
		||||
        room, and where the room should be built along this extra grid space.
 | 
			
		||||
        Because grids are usually thight around the room, this gives us extra
 | 
			
		||||
        place to add a corridor later. Corridor length and orientation is
 | 
			
		||||
        implicitly derived from this info.
 | 
			
		||||
 | 
			
		||||
        h_sup and w_sup represent the extra needed space along each axis,
 | 
			
		||||
        and h_off and w_off are the offset at which to build the room
 | 
			
		||||
        """
 | 
			
		||||
        if random() < self.params["corridor_chance"]:
 | 
			
		||||
            h_sup = randint(self.params["min_v_corr"],
 | 
			
		||||
                            self.params["max_v_corr"]) if random() < .5 else 0
 | 
			
		||||
            # we only allow extra space allocation along one axis,
 | 
			
		||||
            # because there won't more than one exit corridor
 | 
			
		||||
            w_sup = 0 if h_sup else randint(self.params["min_h_corr"],
 | 
			
		||||
                                            self.params["max_h_corr"])
 | 
			
		||||
            # implicitly choose which direction along the axis
 | 
			
		||||
            # the corridor will be pointing to
 | 
			
		||||
            h_off = h_sup if random() < .5 else 0
 | 
			
		||||
            w_off = w_sup if random() < .5 else 0
 | 
			
		||||
            return h_sup, w_sup, h_off, w_off
 | 
			
		||||
@@ -149,6 +192,12 @@ class Generator:
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def build_door(room: List[List[Tile]], y: int, x: int,
 | 
			
		||||
                   dy: int, dx: int, length: int) -> bool:
 | 
			
		||||
        """
 | 
			
		||||
        Tries to build the exit from the room at given coordinates
 | 
			
		||||
        Depending on parameter length, it will either attempt to build a 
 | 
			
		||||
        simple door, or a long corridor.  Return value is a boolean 
 | 
			
		||||
        signifying whether or not the exit was successfully built
 | 
			
		||||
        """
 | 
			
		||||
        rh, rw = len(room), len(room[0])
 | 
			
		||||
        # verify we are pointing away from a floor tile
 | 
			
		||||
        if not(0 <= y - dy < rh and 0 <= x - dx < rw) \
 | 
			
		||||
@@ -160,6 +209,7 @@ class Generator:
 | 
			
		||||
            if 0 <= ny < rh and 0 <= nx < rw \
 | 
			
		||||
                    and room[ny][nx] != Tile.EMPTY:
 | 
			
		||||
                return False
 | 
			
		||||
        # see if the path ahead is clear. needed in the case of non convex room
 | 
			
		||||
        for i in range(length + 1):
 | 
			
		||||
            if room[y + i * dy][x + i * dx] != Tile.EMPTY:
 | 
			
		||||
                return False
 | 
			
		||||
@@ -170,6 +220,10 @@ class Generator:
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def attach_door(room: List[List[Tile]], h_sup: int, w_sup: int,
 | 
			
		||||
                    h_off: int, w_off: int) -> Tuple[int, int, int, int]:
 | 
			
		||||
        """
 | 
			
		||||
        Attach an exit to the room. If extra space was allocated to
 | 
			
		||||
        the grid, make sure a corridor is properly built
 | 
			
		||||
        """
 | 
			
		||||
        length = h_sup + w_sup
 | 
			
		||||
        dy, dx = 0, 0
 | 
			
		||||
        if length > 0:
 | 
			
		||||
@@ -178,11 +232,13 @@ class Generator:
 | 
			
		||||
            else:
 | 
			
		||||
                dx = -1 if w_off else 1
 | 
			
		||||
        else:
 | 
			
		||||
            # determine door direction for rooms without corridors
 | 
			
		||||
            if random() < .5:
 | 
			
		||||
                dy = -1 if random() < .5 else 1
 | 
			
		||||
            else:
 | 
			
		||||
                dx = -1 if random() < .5 else 1
 | 
			
		||||
 | 
			
		||||
        # loop over all possible positions in a random order
 | 
			
		||||
        rh, rw = len(room), len(room[0])
 | 
			
		||||
        yxs = [i for i in range(rh * rw)]
 | 
			
		||||
        shuffle(yxs)
 | 
			
		||||
@@ -191,11 +247,18 @@ class Generator:
 | 
			
		||||
            if room[y][x] == Tile.EMPTY and \
 | 
			
		||||
                    Generator.build_door(room, y, x, dy, dx, length):
 | 
			
		||||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            return None, None
 | 
			
		||||
 | 
			
		||||
        return y + length * dy, x + length * dx, dy, dx
 | 
			
		||||
 | 
			
		||||
    def create_circular_room(self, spawnable: bool = True) \
 | 
			
		||||
            -> Tuple[List[List[Tile]], int, int, int, int]:
 | 
			
		||||
        """
 | 
			
		||||
        Create and return as a tile grid a room that is circular in shape, and 
 | 
			
		||||
        may have a center, also circular hole
 | 
			
		||||
        Also return door info so we know how to place the room in the level
 | 
			
		||||
        """
 | 
			
		||||
        if random() < self.params["large_circular_room"]:
 | 
			
		||||
            r = randint(5, 10)
 | 
			
		||||
        else:
 | 
			
		||||
@@ -222,8 +285,11 @@ class Generator:
 | 
			
		||||
                else:
 | 
			
		||||
                    room[-1].append(Tile.EMPTY)
 | 
			
		||||
 | 
			
		||||
        # log all placed tiles as spawn positions
 | 
			
		||||
        if spawnable:
 | 
			
		||||
            self.register_spawn_area(room)
 | 
			
		||||
 | 
			
		||||
        # attach exit
 | 
			
		||||
        door_y, door_x, dy, dx = self.attach_door(room, h_sup, w_sup,
 | 
			
		||||
                                                  h_off, w_off)
 | 
			
		||||
 | 
			
		||||
@@ -231,9 +297,18 @@ class Generator:
 | 
			
		||||
 | 
			
		||||
    def create_random_room(self, spawnable: bool = True) \
 | 
			
		||||
            -> Tuple[List[list], int, int, int, int]:
 | 
			
		||||
        """
 | 
			
		||||
        Randomly select a room shape and return one such room along with its 
 | 
			
		||||
        door info. Set spawnable to False is the room should be marked as a
 | 
			
		||||
        potential spawning region on the map
 | 
			
		||||
        """
 | 
			
		||||
        return self.create_circular_room()
 | 
			
		||||
 | 
			
		||||
    def register_spawn_area(self, area: List[List[Tile]]) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Register all floor positions relative to the input grid
 | 
			
		||||
        for later use
 | 
			
		||||
        """
 | 
			
		||||
        spawn_positions = []
 | 
			
		||||
        for y, line in enumerate(area):
 | 
			
		||||
            for x, tile in enumerate(line):
 | 
			
		||||
@@ -242,12 +317,27 @@ class Generator:
 | 
			
		||||
        self.queued_area = spawn_positions
 | 
			
		||||
 | 
			
		||||
    def update_spawnable(self, y: int, x: int) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Convert previous spawn positions relative to the room grid to actual
 | 
			
		||||
        actual spawn positions on the level grid, using the position of the 
 | 
			
		||||
        top left corner of the room on the level, then log them as a 
 | 
			
		||||
        spawnable region
 | 
			
		||||
        """
 | 
			
		||||
        if self.queued_area != None:
 | 
			
		||||
            translated_area = [[y+ry, x+rx] for ry, rx in self.queued_area]
 | 
			
		||||
            self.spawn_areas.append(translated_area)
 | 
			
		||||
        self.queued_area = None
 | 
			
		||||
 | 
			
		||||
    def populate(self, rv: Map) -> None:
 | 
			
		||||
        """
 | 
			
		||||
        Populate every spawnable area with some randomly chosen, randomly
 | 
			
		||||
        placed entity
 | 
			
		||||
        """
 | 
			
		||||
        if self.queued_area is not None:
 | 
			
		||||
            translated_area = [[y + ry, x + rx] for ry, rx in self.queued_area]
 | 
			
		||||
            self.spawn_areas.append(translated_area)
 | 
			
		||||
        self.queued_area = None
 | 
			
		||||
 | 
			
		||||
    def populate(self, rv: Map) -> None:
 | 
			
		||||
        min_c, max_c = self.params["spawn_per_region"]
 | 
			
		||||
        for region in self.spawn_areas:
 | 
			
		||||
            entity_count = randint(min_c, max_c)
 | 
			
		||||
@@ -259,6 +349,10 @@ class Generator:
 | 
			
		||||
                rv.add_entity(entity)
 | 
			
		||||
 | 
			
		||||
    def run(self) -> Map:
 | 
			
		||||
        """
 | 
			
		||||
        Using procedural generation, build and return a full map, populated
 | 
			
		||||
        with entities
 | 
			
		||||
        """
 | 
			
		||||
        height, width = self.params["height"], self.params["width"]
 | 
			
		||||
        level = [width * [Tile.EMPTY] for _ignored in range(height)]
 | 
			
		||||
 | 
			
		||||
@@ -266,24 +360,30 @@ class Generator:
 | 
			
		||||
        mem, self.params["corridor_chance"] = self.params["corridor_chance"], 0
 | 
			
		||||
        starting_room, _, _, _, _ = self.create_random_room(spawnable=False)
 | 
			
		||||
        dim_v, dim_h = len(starting_room), len(starting_room[0])
 | 
			
		||||
        # because Generator.room_fits checks that the exit door is correctly
 | 
			
		||||
        # placed, but the starting room has no exit door, we find a positoin
 | 
			
		||||
        # manually
 | 
			
		||||
        pos_y, pos_x = randint(0, height - dim_v - 1),\
 | 
			
		||||
            randint(0, width - dim_h - 1)
 | 
			
		||||
        self.place_room(level, pos_y, pos_x, starting_room, 0, 0)
 | 
			
		||||
        # remove the door that was placed
 | 
			
		||||
        if starting_room[0][0] != Tile.FLOOR:
 | 
			
		||||
            level[pos_y][pos_x] = Tile.EMPTY
 | 
			
		||||
        self.params["corridor_chance"] = mem
 | 
			
		||||
 | 
			
		||||
        # find a starting position
 | 
			
		||||
        # find a starting position for the player
 | 
			
		||||
        sy, sx = randint(0, height - 1), randint(0, width - 1)
 | 
			
		||||
        while level[sy][sx] != Tile.FLOOR:
 | 
			
		||||
            sy, sx = randint(0, height - 1), randint(0, width - 1)
 | 
			
		||||
        level[sy][sx] = Tile.LADDER
 | 
			
		||||
 | 
			
		||||
        # now we loop until we've tried enough, or we've added enough rooms
 | 
			
		||||
        # now we loop until we're bored, or we've added enough rooms
 | 
			
		||||
        tries, rooms_built = 0, 0
 | 
			
		||||
        while tries < self.params["tries"] \
 | 
			
		||||
                and rooms_built < self.params["max_rooms"]:
 | 
			
		||||
 | 
			
		||||
            # build a room, try to fit it everywhere in a random order, and
 | 
			
		||||
            # place it at the first possible position
 | 
			
		||||
            room, door_y, door_x, dy, dx = self.create_random_room()
 | 
			
		||||
            positions = [i for i in range(height * width)]
 | 
			
		||||
            shuffle(positions)
 | 
			
		||||
@@ -298,6 +398,12 @@ class Generator:
 | 
			
		||||
 | 
			
		||||
        # post-processing
 | 
			
		||||
        self.place_walls(level)
 | 
			
		||||
 | 
			
		||||
        # because when a room is placed, it leads to exactly one previously
 | 
			
		||||
        # placed room, the level has a tree like structure with the starting
 | 
			
		||||
        # room as the root
 | 
			
		||||
        # to avoid boring player backtracking, we add some cycles to the room
 | 
			
		||||
        # graph in post processing by placing additional corridors
 | 
			
		||||
        tries, loops = 0, 0
 | 
			
		||||
        while tries < self.params["loop_tries"] and \
 | 
			
		||||
                loops < self.params["loop_max"]:
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user