mirror of
https://gitlab.crans.org/bde/nk20
synced 2025-06-21 01:48:21 +02:00
Préparation WEI 2023
This commit is contained in:
110
apps/wei/tests/test_wei_algorithm_2023.py
Normal file
110
apps/wei/tests/test_wei_algorithm_2023.py
Normal file
@ -0,0 +1,110 @@
|
||||
# Copyright (C) 2018-2023 by BDE ENS Paris-Saclay
|
||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
import random
|
||||
|
||||
from django.contrib.auth.models import User
|
||||
from django.test import TestCase
|
||||
|
||||
from ..forms.surveys.wei2023 import WEIBusInformation2023, WEISurvey2023, WORDS, WEISurveyInformation2023
|
||||
from ..models import Bus, WEIClub, WEIRegistration
|
||||
|
||||
|
||||
class TestWEIAlgorithm(TestCase):
|
||||
"""
|
||||
Run some tests to ensure that the WEI algorithm is working well.
|
||||
"""
|
||||
fixtures = ('initial',)
|
||||
|
||||
def setUp(self):
|
||||
"""
|
||||
Create some test data, with one WEI and 10 buses with random score attributions.
|
||||
"""
|
||||
self.wei = WEIClub.objects.create(
|
||||
name="WEI 2023",
|
||||
email="wei2023@example.com",
|
||||
date_start='2023-09-16',
|
||||
date_end='2023-09-18',
|
||||
year=2023,
|
||||
)
|
||||
|
||||
self.buses = []
|
||||
for i in range(10):
|
||||
bus = Bus.objects.create(wei=self.wei, name=f"Bus {i}", size=10)
|
||||
self.buses.append(bus)
|
||||
information = WEIBusInformation2023(bus)
|
||||
for word in WORDS:
|
||||
information.scores[word] = random.randint(0, 101)
|
||||
information.save()
|
||||
bus.save()
|
||||
|
||||
def test_survey_algorithm_small(self):
|
||||
"""
|
||||
There are only a few people in each bus, ensure that each person has its best bus
|
||||
"""
|
||||
# Add a few users
|
||||
for i in range(10):
|
||||
user = User.objects.create(username=f"user{i}")
|
||||
registration = WEIRegistration.objects.create(
|
||||
user=user,
|
||||
wei=self.wei,
|
||||
first_year=True,
|
||||
birth_date='2000-01-01',
|
||||
)
|
||||
information = WEISurveyInformation2023(registration)
|
||||
for j in range(1, 21):
|
||||
setattr(information, f'word{j}', random.choice(WORDS))
|
||||
information.step = 20
|
||||
information.save(registration)
|
||||
registration.save()
|
||||
|
||||
# Run algorithm
|
||||
WEISurvey2023.get_algorithm_class()().run_algorithm()
|
||||
|
||||
# Ensure that everyone has its first choice
|
||||
for r in WEIRegistration.objects.filter(wei=self.wei).all():
|
||||
survey = WEISurvey2023(r)
|
||||
preferred_bus = survey.ordered_buses()[0][0]
|
||||
chosen_bus = survey.information.get_selected_bus()
|
||||
self.assertEqual(preferred_bus, chosen_bus)
|
||||
|
||||
def test_survey_algorithm_full(self):
|
||||
"""
|
||||
Buses are full of first year people, ensure that they are happy
|
||||
"""
|
||||
# Add a lot of users
|
||||
for i in range(95):
|
||||
user = User.objects.create(username=f"user{i}")
|
||||
registration = WEIRegistration.objects.create(
|
||||
user=user,
|
||||
wei=self.wei,
|
||||
first_year=True,
|
||||
birth_date='2000-01-01',
|
||||
)
|
||||
information = WEISurveyInformation2023(registration)
|
||||
for j in range(1, 21):
|
||||
setattr(information, f'word{j}', random.choice(WORDS))
|
||||
information.step = 20
|
||||
information.save(registration)
|
||||
registration.save()
|
||||
|
||||
# Run algorithm
|
||||
WEISurvey2023.get_algorithm_class()().run_algorithm()
|
||||
|
||||
penalty = 0
|
||||
# Ensure that everyone seems to be happy
|
||||
# We attribute a penalty for each user that didn't have its first choice
|
||||
# The penalty is the square of the distance between the score of the preferred bus
|
||||
# and the score of the attributed bus
|
||||
# We consider it acceptable if the mean of this distance is lower than 5 %
|
||||
for r in WEIRegistration.objects.filter(wei=self.wei).all():
|
||||
survey = WEISurvey2023(r)
|
||||
chosen_bus = survey.information.get_selected_bus()
|
||||
buses = survey.ordered_buses()
|
||||
score = min(v for bus, v in buses if bus == chosen_bus)
|
||||
max_score = buses[0][1]
|
||||
penalty += (max_score - score) ** 2
|
||||
|
||||
self.assertLessEqual(max_score - score, 25) # Always less than 25 % of tolerance
|
||||
|
||||
self.assertLessEqual(penalty / 100, 25) # Tolerance of 5 %
|
Reference in New Issue
Block a user